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ABSTRACT 
We characterize cardinals  x such tha t  2 ~ = 2 K whenever  x < 2 < 2 K us ing  
ideals in small  algebras o f  sets sat isfying certain comple teness  and  sa tura t ion  
condit ions.  

O. Introduction 

If 2`0 is real-valued measurable or, more generally, carries a 2`0-complete 

a-saturated nontrivial ideal, then 2 ̀ 0= 2 a for all infinite cardinals 2 < 2`0. 

A detailed proof of this result of [P] can be found in I J, Proof of Theorem 83, 
p. 426]. We observe that under the hypothesis of  the above stated theorem, 2`0 

is a very large cardinal (see [U] and [$1]) and thus the equation 2`0 = 2 a is 
satisfied by many cardinals 2. In this paper we generalize the above mentioned 
theorem. In Theorem 1, we give some very weak conditions on a cardinal 2 
entailing the equation 2 ~ = 2~ (where 2~ = sup{2 v : v <2}) .  This theorem is 
then used to obtain, in Theorem 2, several characterizations of cardinals K 
satisfying the condition in the title. The result of  [P] mentioned above is 

obtained in Corollaries 1 (i) and 2(i). 
The implications for cardinal exponentiation of the existence of ideals, with 

strong completeness and saturation properties, have also been investigated in 

[KT], [$2] and [ JP], among others. While these earlier works deal with ideals in 

the entire power set, in this paper we consider ideals in small subalgebras of the 

power set algebra. This latter approach has also been adopted in [Ca] and [PP]. 
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It leads to demonstrably weaker conditions I ones which do not entail the 

existence of large cardinal numbers. In fact, our conditions, following as they 

do from the condition in the title, are (nontrivially) satisfied in Cohen's models 

[Co] of  the negation of  the continuum hypothesis and, in an even more general 

form, in Easton-type models [El. 
Finally, we point out that the method of [P] uses a result from partition 

calculus, whereas the present approach is motivated by measure-theoretic 

considerations. 

1. Notation, definitions and statement of the results 

Our set theoretic notation is standard. The power set and the cardinality of  a 
set A are denoted by ~(A)  and I A ], respectively. If~c is a cardinal then tc + and 

cf(x) denote the successor of ~c, and the cofinality of ~c, respectively. Further- 

more 2~ is the supremum of 2 ~ , 2 < x. Each ordinal is identified with the set of  

smaller ordinals and cardinals are initial ordinals. If f is a function and E is 

contained in the domain of f ,  thenf~  E is the restriction o f f  to E. 

An algebra on X is a subalgebra of ~(X).  Let ~ / b e  an algebra on X. d 

is generated by ~ if ~ / i s  the least algebra on X such that ~ c_ ~/. Let 0¢ 

be an ideal in M. J is nontriw'al if J is proper and contains all singletons 

of ~4. ~¢ is x-complete if for every 3f* ___J with I~¢*1 <~c there is some 
A E3~ such that U J * _  A. J is weakly to-complete if for every J * _  3~ 
with I J * ] < ~ c ,  U J * : g X .  A family ~/*___~ is J-disjoint if for all 

A~,A2~I* such that A~ ¢A2 we have A~ A A 2 E J .  3f is ~c-saturated (resp. 
weakly Jc-saturated) if ],~/*1 < x for every J-dis jo int  (resp. disjoint) family 
~/* c C_ ~¢ \ J .  d is called a ~-algebra if,~/is closed under unions of  subfamilies 

of cardinality less than K. ~ is n-generated by ~ if ~ is the least x-algebra on 

X such that o~ _c .~. 

Let .~/be any family of  sets, S a set and K a cardinal number. N is said to be 

x-saturated with respect to S if there is no ~ *  __ d ,  consisting of pairwise 

disjoint sets all of  which have nonempty intersection with S, and I ~ * l  = x. 

We say that (i) p has the weak (r, 2)-extension property if every algebra on p 

generated by the singletons and at most ~ additional sets has a weakly 

r +-complete weakly 2-saturated nontrivial ideal; (ii)p has the (r, 2)-coherence 
property if for every family s /c_ ~ ( p )  such that [ ~/I --< r there is an S __ p and 

x0 E S such that s~ is 2-saturated with respect to S and for all A E ~ ,  if x0 ~ A, 

then [A C~ S[ > ~. We shall see in Section 2, Lemma 1 that i fp  has the weak 

(r, 2)-extension property then p has the (r, 2)-coherence property. 
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A cardinal p is real  valued measurable if there is a p-addit ive probability 
measure on ~ ( p )  vanishing on all singletons. 

We shall now state our results and derive Corollaries 1 and 2 from Theorem 
2. Proofs of  Theorems 1 and 2 are given in the following section. 

THEOREM 1. Let  2 be an infinite regular cardinal and c f ( v ) >  2 where 

v = 2~. Also suppose that v + has the (r ,2)-coherence property (or the 

weak (r, 2)-extension property) for every cardinal z < v such that cf ( r )  = 2. 

Then 2 ~ = v. 

THEOREM 2. Let  x be an infinite cardinal and set v = 2 ~. Then the follow- 

ing are equivalent: 

(a) 2 ~ = v for all 2 such that lc < 2 < v; 

(b) v is regular and v + has the (r, x+)-coherence property for all z < v; 

(c) v is regular and  v + has the (r, cf(z))-coherence property for all r < v such 

that cf ( r )  > Jc; 
(d) v is regular and v + has the weak (z, x+)-extension property for every 

cardinal r < v; 

(e) v is regular and  v + has the weak (z, cf(z))-extension property for every 

cardinal r < v such that cf(z)  > x; 
( f )  every v +-algebra on v +, v +-generated by the singletons and less than v 

additional sets has a v +-complete nontrivial pr ime ideal. 

REMARK. We don' t  know if the regularity o f  v in condit ions (b)-(e) above 
follows from the other half of  each of  these conditions. 

COROLLARY 1. Let  ~c be an infinite cardinal and set v = 2 ~. Suppose that 

one o f  the following conditions (i) or, more generally, (ii) holds: 

(i) There is a v-complete x+-saturated nontrivial ideal in ~'(v). 

(ii) v is regular and for every cardinal r < v there is some p such that r < p <= v 

and there is a z+-complete x+-saturated nontrivial ideal ~ in ~ ( p  ). 

Then 2 ~ = v for all 2 such that x < 2 < v. 

COROLLARY 2. Set v = 2 °~ and suppose that one o f  the following conditions 

(i) or, more generally, (ii) holds: 

(i) v is real- valued measurable. 

(ii) v is regular and for every r < v there is a real- valued measurable cardinal 

p such that r < p < v. 

Then 2 ~ = v for all infinite 2 < v. 

PROOF o r  COROLLARY 1. We shall show that both (i) and (ii) imply (d) of  
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Theorem 2. If (i) holds, v is regular by [St, Section 2, Lemma 2]. Now let 

d C_ ~(v+), where I~¢ 1 < z < v. Using either (i) or (ii) we can pick some p 

such that r < p < v and ~'(p) has a r +-complete x +-saturated nontrivial ideal 

J .  Let ~¢ be the algebra on v ÷ generated by M and the singletons. We now 

define an ideal J in ~t by ~¢ ~_-- o¢ iff M A p E J .  It is easy to verify that ~¢ 

satisfies the conditions of (d). Thus, since (d) implies (a), the conclusion of 

Corollary 1 follows. 

PROOF OF COROLLARY 2. Corollary 2 follows immediately from Corollary 

1 since if p is a real-valued measurable cardinal then the null ideal of a 

probability measure on #(p) ,  witnessing to the real-valued measurability of p, 

is a p-complete wl-saturated nontrivial ideal. 

We shall conclude this section with a remark for the expert reader outlining 

our key argument. In particular, we sketch a proof that if 2 ~ = v and there is a 

v-complete x+-saturated nontrivial ideal in ~(v), then 2 ~ = v for all 2 such that 

x < 2 < v. Our terminology is the same as in [B] or [ J]. 

Suppose 2 < v is minimal with 2 ~ > v. Then 2 is regular and 2 :> ~c. Find a 

tree Tof  height )~ so that 1 T I < v and T has at least v branches of length 2 (so far 

this is like the argument in [J, Proof of Theorem 83, p. 426]). For t ~ T, let St 

be the set of all branches of T containing t. Put the ideal given by the 

hypothesis on the set of all branches of T, and let N be the union of all sets St 
which belong to the ideal. Then N belongs to the ideal. I fb is a branch not in N 

then note that {St : t E b } contains a sequence of 2 properly decreasing sets not 

in the ideal, contradicting x+-saturation. 

The crucial observation is that there is no need whatever for the ideal to be 

defined on the full power set of v; it is only necessary that it be defined on a 

collection (not even necessarily an algebra) containing the sets St. Moreover, 

since Tcould be chosen with v ÷ branches we could assume the St are subsets of 

v ÷, not v. This now points the way to working with ideals in small algebras of 

sets as well as to some more purely combinatorial results. 

2. Proofs of Theorems 1 and 2 

LEMMA 1. I f  p has the weak (z, ~)-extension property then p has the 
( z , A )-coherence property, 

PROOF. Let ~ C ~ ( p )  where I ~/I =< r. Let ~ / b e  the algebra on p gener- 

ated by ~/ and the singletons. Let ) be a weakly r+-complete weakly 2- 

saturated nontrivial ideal in ~/, as guaranteed by the hypothesis. Let ~ be the 
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ideal in ~'(p) consisting of those sets which can be covered by ~ r sets in o¢. 
Obviously, J¢ is z +-complete and nontrivial (p cannot belong to ~¢ by the weak 
z +-completeness of 3) .  

Now set N = U(~¢ N ~1), S = p \ N. Since I ~11 < z, we have N ~ J .  Hence 

S ~ .  

CLAIM. I f A E ~ C a n d A  N S : ~  thenA N S ~ J a n d t h u s  IA NSI  >=2. 

Indeed, i fA f~ S ~  then N U (A N S ) ~ J  and thus A E J ;  in particular, 

A c N, contradicting A n S ~ ~ .  

We can now show that d is 2-saturated with respect to S. To this end, let 

~¢* _c d consist of pairwise disjoint sets all of which meet S, and let 

I~*1 >=2. 
Choose an A @ d * .  Then A @ d  and A N S v ~ ,  so by the Claim, 

A n S (~ J and thus A ~ J .  Hence A ~ J since J ___ 3t. Consequently d *  

witnesses to 3~ not being 2-saturated and we have reached a contradiction. 

It is also clear from the Claim that for x0 required in the (r, 2)-coherence 

property, we can pick any element of S. This completes the proof of Lemma 1. 

In the following Lemma 2, we investigate the least possible number of  

initial segments of members of a large subset of (0, 1 }~. This lemma is a 

corollary of [B, Corollary 3.2, p. 412]. However, in order to keep the paper self- 
contained, we wish to include a proof of Lemma 2 which does not employ the 

somewhat specialized set-theoretic terminology of [B]; readers with a back- 

ground in measure theory may appreciate this. For these readers, we will also 

indicate, in the concluding remark, a shortcut to the proofs of Corollaries 1 and 
2 using only the easier part - -  c f ( p ) < 2  I of  Lemma 2. The original 

applications of  such results in [B] are to obtain large families of  almost disjoint 

sets. Here the full strength of Lemma 2 is used to obtain the equivalences 

(c) and (e) in Theorem 2. Only the easy part is needed for the proof that (a), (b), 
(d) and (f )  are equivalent. 

LEMMA 2. Let  2 be an infinite regular cardinal and set 2~ = v. Suppose that 

v < 2 ~. Let  p be min imal  such that there is an X C_ {0, 1 }z with I XI = v + and 

I Y I = P, where 

Y =  {x t o~ : x E X ,  o~<2 }. 

Then p <= v and cf(p)  = 2. 
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PROOF. Let X, Y and p be as above. Firstly p =< v since 

YC_ U { { 0 , 1 } ~ : o ~ < 2 } ,  

and the latter set has cardinali ty v. Likewise 2 =< p since any one f u n c t i o n f E  X 

has exactly 2 proper  initial segments. 

Now fix a bijection g : Y----p. 

We show first that c f (p )  =< 2. Suppose c f (p )  > 2. For  each x ~ X  set 

qx = sup { g ( x  F oO : o~ < 2 }. 

Then q~ < p and thus, as p < v, there is X* c_ X and q < p such that I X* I = v + 

and q.~ < q for all x E X * .  Hence since g is an injection and 

we have 

g ( ( x  ~ ,~ : x E X * ,  ~ < 2 } )  C_C_ q, 

contradict ing the choice of  X.  

It remains to show that cf ( ,o )  > 2.  I f  p = 2 ,  we are done, for 2 is regular. 

Thus  in view of  2-_< p it now suffices to reach a contradict ion from the 

assumption that c f (p )  < 2 < p Let R be a cofinal subset o fp  with I R I = c f ( p ) .  

Since 2 is regular, for each x ¢ X we can pick a 7x ¢ R such that 

Lx = (c~e2 : g (x  r a) < 7x} 

has cardinali ty 2. Similarly we can pick a 7* < P such that 

has cardinali ty v +. Let 

X *  = { x ~ X :  Tx < 7 " }  

Y* = !ix t a : x E X * , a < 2 } .  

We reach a contradict ion by showing that [ Y*I < P .  To do this we define an 

injection h : Y* --* 2 × 7" as follows. Choose a t E Y* o f  length a. Let fl > a be 

minimal  such that for some x E! X*, fl E Lx and x r a = t. Pick such an x and set 

h ( t )  = (a, g ( x  r fl)).  Since g is an injection and (x t fl) t a = t, it is clear that h is 

an injection. Thus I Y*I --< 2.17"1 < P ,  a contradict ion.  

PROOF OF THEOREM 1. By Lemma  1 it suffices to prove the theorem 

assuming that v + has the (r ,  ; .)-coherence property for every cardinal • < v 

such that c f ( r )  = 2. Proceeding towards a contradict ion,  assume that 2 a > v. 
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Choose X, Y and p as in Lemma 2. Thus I X [ = v  +, I Y I = p  < v  and 
cf(p) =/1. It follows that p < v; otherwise p = v and thus cf(v) = cf(p) = 2 

contradicting the assumption that cf(v) >/1. Thus v + has the (p,/1)-coherence 

property. 

Let ~¢ be the algebra on X generated by the sets 

X(t) = {x E X:  x extends t } (t E Y). 

Then I ~ l  = I YI = p .  Since v + has the (p,/1)-coherence property we can 

choose an S c_ Xand x0ESso that d is/1-saturated with respect to Sand for all 

A E d i f x o E A ,  then [ A n S I  > 2 .  

Writing briefly X(a) instead of X(xo ~ a), we shall establish the following 

claim. 

CLAIM. There is an a0E/l such that for each a with a0 < a </I  we have 

X(a) n S = X(a0) n S. 

Suppose the Claim is false. Then since ,t is regular, there is a strictly 

increasing sequence a¢, ~ < 2, such that 

X(~¢+ 0 n S ÷ X(~¢) n S. 

Since the sets X(oq) are decreasing we see that the family 

{X(o~¢) \ X(o~¢ + 1) : ~ E/1 } 

consists of pairwise disjoint sets all of which have nonempty intersection with 

S. Hence ~ is not/1-saturated with respect to S. This contradition establishes 

the Claim. 

We are ready to conclude the proof of the theorem. Let a0 be as in the Claim. 

As Xo E X(ao), by the choice of S and x0 there is an x ~ X(ao) n S distinct from 

x0. Let a>ao,  a~/1, be such that x~a=gXo~a. Then xq~X(a) and thus 

X(a) N S ~ X(ao) n S, contradicting the choice of a0. 

PRooF oF TIJEOR~M 2. "(C) implies (a)" follows easily from Theorem 1. To 

see this suppose that x </1 < v and, proceeding inductively, that 2 ~ = v 

whenever x </z </1. If 2 is singular, then 2 = sup {2¢ : ~ < cf(/1)} where 

2¢ < 2, c f (2 )<  2, and v = 2~. Thus 

2 a =  H 2 ~ ,=v  cf(~)=2 ~'~f(~)=v. 
~cf(~) 
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N o w  suppose that 2 is regular. By (c), v is also regular and hence, as ;t < v, we 

have cf(v) > 2. Since 2" = v for x _-</z < 2, we see that v = 2~. Finally, i f r  < v 

and cf(z)  = 2 we conclude from (c) that v + has the (r, 2)-coherence properly 

(since 2 > x). Hence the assumptions of  Theorem 1 are verified and 2 a = v 

follows, proving (a). 

Lemma 1 shows that (e) implies (c) and (d) implies (b). Moreover,  (b) 

trivially implies (c), and (d) trivially implies (e). 

In the next two steps we show that (a) and ( f )  are equivalent.  

To show that (a) implies ( f )  let ~t  be a v+-algebra on v ÷, v+-generated by 
the singletons and a family o~ c_ ~¢ such that I ~  I = r < v. Pick o~r~ C_ ~r so 

that I S [ = v + where 

s = (N ~ 0  n n {v+ \A :a  

This is possible since 2 ~ < v. Set 

~ t = { h  C_v + :IA h a l  _-<vor I(v+\h)nSI <v}, 

3 = {A E ~ : I A n S ! < v } and • = 3 N ~¢. Then ~t  is a v +-algebra on v + 
containing all the generators of~¢ and thus ~¢ itself, o~ is the desired ideal in ~¢ 

since 3 is easily seen to be a nontrivial v+-complete pr ime ideal in ~¢. 

The proof  that ( f )  implies (a) is merely Tarski 's p roof  that there is no 2 ÷- 

complete free ultrafilter in ~*(2z). Indeed, suppose that  2 ~ :> v where x < 2 < v 

and let T ___ { 0, 1 } ~, I T I = v +. Then if  d is any 2 ÷-algebra on T such that the 

relative subbasic subsets o f  T belong to ~ / ( a n d  there are only 2 such sets), it 

follows that every 2 +-complete ultrafilter in ~¢ is fixed. For  it contains, for 

each a E 2 ,  one of  the sets {t ~ T:  t(a) = i}, where i = 0 or 1, and thus by the 

2 ÷-completeness it also contains {s } for some s E T. Consequent ly  ( f )  fails. 
The final step, showing that ( f )  implies (d), completes  the p roof  o f  Theorem 

2. Firstly since ( f )  implies (a), v is regular by Konig's Theorem [ J, Corollary 3, 

p. 46]. Now let ~ / b e  an algebra on v ÷ generated by the singletons and some 

C_C_ ~ / w i t h  I ~" l = z < v. Let ~ be the v +-algebra on v +, v +-generated by 

and the singletons. Let 3 be a v+-complete nontrivial  pr ime ideal in .~  as 

guaranteed by (f) .  Then ~ = z~ N ~ / i s  the desired ideal in ~/. 

REMARK. We shall now indicate a shortcut  to the proofs o f  Corollaries 1 

and 2 using only the easier direction - -  c f (p )  < 2 - -  o f  L e m m a  2. This 

direction suffices to establish Theorem 1" which is exactly like Theorem 1 

except that the (r, 2)-coherence property o f  v ÷ is now assumed for all z < v 

not just  for those of  cofinality Z. One can proceed exactly as in the p roof  of  
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Theorem 1 except that to conclude that v ÷ has the (p, 2)-coherence property, 
one now needs to know only that p < v. To establish that p < v it clearly 
suffices to know only that cf(p)  < 2. 

Theorem 1" suffices to establish "(d) implies (a)" of  Theorem 2 - -  the only 
part of  Theorem 2 which is used in the proofs of  Corollaries 1 and 2. Firstly 
"(d) implies (b)" follows from Lemma 1, as pointed out in the proof of 
Theorem 2. Finally, the proof, as given above, of  "(c) implies (a)", which 
utilizes Theorem 1, is easily modified to give "(b) implies (a)" using Theorem 
1" only. 
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